POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Elective I: Composite Struc	tures		
Course			
Field of study		Year/Semester	
Civil Engineering		2/3	
Area of study (specialization)		Profile of study	
Construction Engineering a	nd Management	general academic	
Level of study		Course offered in	
Second-cycle studies		English	
Form of study		Requirements	
full-time		elective	
Number of hours			
Lecture	Laboratory classes	Other (e.g. online)	
15	0	0	
Tutorials	Projects/seminars		
0	15		
Number of credit points			
2			
Lecturers			
Responsible for the course/lecturer: Re		onsible for the course/lecturer:	
dr inż. Robert Studziński		mgr inż. Łukasz Polus	

email: robert.studzinski@put.poznan.pl tel. 616652091 Wydział Inżynierii Lądowej i Transportu ul. Piotrowo 5, 60-965 Poznań Responsible for the course/lecturer: mgr inż. Łukasz Polus email: lukasz.polus@put.poznan.pl tel. 616652097 Wydział Inżynierii Lądowej i Transportu ul. Piotrowo 5, 60-965 Poznań

Prerequisites

Knowledge, skills and competences acquired during the education process in the field of structural design.

The ability to formulate and solve technical problems in the field of civil engineering.

Course objective

To acquaint students with the current problems of designing and implementing the composite structures.

Course-related learning outcomes

Knowledge

1. The student has knowledge of detailed and advanced issues of material strength, modelling of

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

materials and structures; have knowledge of the theoretical basis of the Finite Element Method as well as general principles of nonlinear analysis of engineering structures.

2. The student knows in detail the rules of design, construction and operation of selected building units.

Skills

 The student is able to correctly define a computational model and carry out an advanced linear analysis of complex building units, their elements and connections; is able to apply basic nonlinear computational techniques together with a critical evaluation of numerical analysis results.
The student can dimension complex construction details in selected building objects.

Social competences

1. The student is ready to autonomously complete and broaden (extend) knowledge in the field of modern processes and technologies of building engineering.

2. The student can realise that it is necessary to improve professional and personal competence; is ready to critically evaluate the knowledge and received content.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Assessment of the lectures: written test including 3-5 tasks checking the subject learning outcomes, the condition for passing is obtaining a minimum satisfactory mark.

Assessment of projects: Students are assessed on an ongoing basis according to the progress of work in modeling the structure and calculating tasks. The assessment concerns each of the given problems; the condition for passing is obtaining a minimum satisfactory mark.

Programme content

Lectures:

- 1. Introduction to composite structures.
- 2. Composite structures material properties.
- 3. Basis of design
- 4. Shear connections.
- 5. Composite slabs.
- 6. Composite beams.
- 7. Fire resistance of composite structures.

Projects:

1. Designing of a composite floor.

Teaching methods

Lectures: informative and problem lecture, case study method Projects: project method, solving project tasks given by the teacher

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

- 1. EN 1990: Eurokod 0 Basis of structural design
- 2. EN 1991: Eurokod 1 Actions on structures
- 3. EN 1994: Eurokod 2 Design of composite structures
- 5. Roger P. Johnson, Designers' Guide to Eurocode 4: Design of Composite Steel and Concrete
- Structures: EN 1994-1-1. ICE Publishing, 2012.

6. Roger P. Johnson, Composite Structures of Steel and Concrete: Beams, Slabs, Columns and Frames for Buildings, Wiley-Blackwell, 2018.

Additional

1. Łukasz Polus, Maciej Szumigała, An experimental and numerical study of aluminium-concrete joints and composite beams. Archives of Civil and Mechanical Engineering 19(2), p. 375-390, 2019.

 Marcin Chybiński, Łukasz Polus, Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections, Construction and Building Materials 226, p. 317-330, 2019.
Maciej Szumigała, Ewa Szumigała, Łukasz Polus, Laboratory tests of new connectors for timberconcrete composite structures, Engineering Transactions 66(2), p. 161-173, 2018.

4. Marcin Chybiński, Łukasz Polus, Wojciech Szwabiński, Patryk Niewiem, FE analysis of steel-timber composite beams, in: Paweł Baranowski, Piotr Kędzierski, Anna Szurgott (eds.), Computational Technologies in Engineering (TKI'2018), AIP Publishing, p. 020061-1-020061-6, 2019.

5. Marcin Chybiński, Łukasz Polus, Bending resistance of metal-concrete composite beams in a natural fire. Civil and Environmental Engineering Reports 28(4), p. 149-162, 2018.

	Hours	ECTS
Total workload	60	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for	30	1,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

Breakdown of average student's workload

¹ delete or add other activities as appropriate